

RESEARCH ON THE COMBINATION OF VEGETATIVE STRIPS WITH VERTICAL AGRIVOLTAIC SYSTEMS AS PART OF AGRI-ENVIRONMENTAL-CLIMATE MEASURES SUPPORTING BIODIVERSITY.

Project SS05010243 - **Program** Prostředí pro život 5. Speaker Ing. David Hájek, Ph.D. Authors – collective of authors– VÚZT v.v.i., VÚRV v.v.i., ČZU a Stradlova s.r.o.

Seminar Mission Solar CEE Region 2024: How important is solar technology in achieving 2030 goals?, 12.11.2024 CIIRC CVUT Prague T A Č R

Program Prostředí pro živo

0

AIM OF THE PROJECT

The aim of the project is to research a combination of vegetative strips with a vertical agrivoltaic system and its contibution to biodiversity in the agricultural landscape while increasing the economic attractiveness of vegetative strips through the generation of renewable electricity. Vegetative strips will be sown by mixtures of grasses and nectar-bearing plants according to the principles of agri-environment-climate measures and vertical photovoltaic panels will be installed in these strips. The changes in the biological diversity of plants and insects, the impact on crops and the performance of the power plant will be monitored. Output will be documents for amendments to legislative regulations and recommendations for agricultural practice.

- <u>-Project participants are</u>-VÚZT, v.v.i., VÚRV, v.v.i., ČZUTF, Stradlova s.r.o.
- <u>Project realisation 2022-2024</u>, implementation period 2025-2027.
- <u>Application Guarantor</u> Department of Environmental and Organic Agriculture Ministry of Agriculture Czech republic - MZe,

AGRIVOLTAICS OR AGRIPHOTOVLOTAICS

Т

Č

Α

R

7	Stav ke dni	Orná půda	Chmelnice	Vinice	Zahrada	Ovocný sad	Trvalý travní porost	Celkem zemědělská půda
	31.12.2020	2 931 912	9 548	20 179	72 059	44 022	1 022 716	4 200 204
	31.12.2019	2 940 927	9 827	20 141	169 286	44 376	1 017 555	4 202 112
	31.12.2018	2 951 395	9 899	20 001	166 350	44 986	1 011 095	4 203 726
	31.12.2017	2 958 603	10 066	20 008	164 815	45 245	1 006 552	4 205 288
	31.12.2016	2 965 606	10 127	19 835	164 024	45 390	1 003 393	4 208 374
	31.12.2015	2 971 957	10 149	19811	163 785	45 613	I 000 620	4 211 935
	31.12.2014	2 978 989	10 276	19611	163 601	45 920	997 225	4 215 621
	31.12.2013	2 985 792	10 312	19 652	163 476	46 172	994 461	4 219 867
	31.12.2012	2 993 236	10 355	19 562	163 320	46 393	991 523	4 224 389
	31.12.2011	3 000 390	10 454	19 489	163 152	46 390	989 293	4 229 167
	31.12.2010	3 008 090	10 552	19 434	163 010	46 556	985 859	4 233 501
	31.12.2009	3 016 858	10 661	19 292	162 877	46 511	982 776	4 238 975
	31.12.2008	3 025 597	10 762	19 131	162 642	46 231	979 718	4 244 081
	31.12.2007	3 032 448	10 766	19116	162 322	46 537	977 988	4 249 177
	31.12.2006	3 039 669	10 844	18 906	162 033	46 725	976 226	4 254 403
	31.12.2005	3 047 249	10 967	18 670	161 811	46 994	973 789	4 259 480
	31.12.2004	3 054 654	11 045	18 278	161 548	47 300	971 748	4 264 573
	31.12.2003	3 062 009	11 063	16 740	161 186	47 593	970 627	4 269 218
	31.12.2002	3 068 239	11 105	15 902	160 910	48 373	968 272	4 272 801
	31.12.2001	3 075 178	11 236	15 626	160 710	48 803	965 882	4 277 435
	31.12.2000	3 082 383	11 232	15 574	160 609	49 008	961 070	4 279 876
	31.12.1999	3 095 96 0	11 268	15 494	160 329	49 196	950 199	4 282 446

Č

R

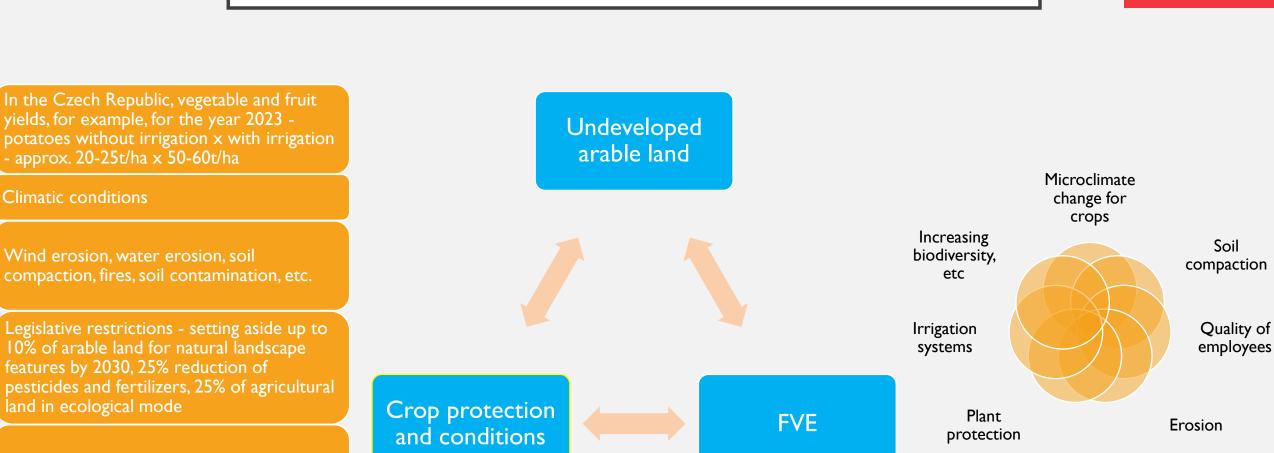
Source: Kolektiv autorů; Situační a výhledová zpráva půda 2021, Ministerstvo zemědělství, Těšnov 65/17, 110 00 Praha 1, 2022, ISBN 978-80-7434-598-2, ISSN 1211-7692, MK ČR E 11003

STATE OF THE

AGRICULTURA

L LAND FUND

IN THE CZECH


REPUBLIC

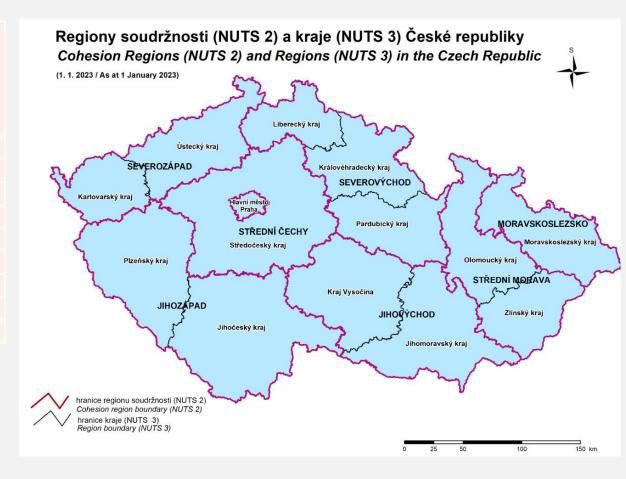
Zdroj: ČÚZK, zpracoval: VÚMOP

	Stav ke dni	Výměra ZPF celkem [ha]	Meziroční úbytek [ha]	Denní úbytek [ha]	т	Α
LOSS OF	31.12.2020	4 200 204	1 909	5,2		
	31.12.2019	4 202 112	1 613	4,4	Č	R
	31.12.2018	4 203 726	1 562	4,3		
	31.12.2017	4 205 288	3 086	8,5		
LOSS OF AGRICULTURAL LAND 1999– 2020	31.12.2016	4 208 374	3 561	9,8		
	31.12.2015	4 211 935	3 686	10,1		
	31.12.2014	4 215 621	3 291	9,0		
	31.12.2013	4 219 867	5 477	15,0		
	31.12.2012	4 224 389	4 778	13,1		
	31.12.2011	4 229 167	4 334	11,9		
	31.12.2010	4 233 501	5 474	15,0		
	31.12.2009	4 238 975	5 106	14,0		
2020	31.12.2008	4 244 081	5 096	14,0		
	31.12.2007	4 249 177	5 226	14,3		
	31.12.2006	4 254 403	5 077	13,9		
	31.12.2005	4 259 480	5 093	14,0		
	31.12.2004	4 264 573	4 645	12,7		
	31.12.2003	4 269 218	3 583	9,8		
	31.12.2002	4 272 801	4 634	12,7		
	31.12.2001	4 277 435	2 441	6,7		
tiv autorů; Situační a výhledová zpráva půda 2021,	31.12.2000	4 279 876	2 570	7,0		
zemědělství, Těšnov 65/17, 110 00 Praha 1, 2022,	31.12.1999	4 282 446				
34-598-2, ISSN 1211-7692, MK ČR E 11003	Zdroj: VÚMOP, v.v.i					

Zdroj: VÚMOP, v.v.i

PARAMETERS OF (OPEN) AGROVOLTAICS

Labor shortage in agriculture and others


CORRECT SETTING OF THE PARAMETERS IS ESSENTIAL, THE PARAMETERS CANNOT BE SET WITHOUT PILOT PROJECTS. A R

POTENTIAL OF AGROVOLTAICS IN THE CZECH REPUBLIC

Nuts 2 Regions	Country code	Available land (%)	Available land (km ²)	Potential capacity (GW)	kWh/kW	Potential energy (TWh)
Severozápad	CZ	40.2	3473	104.2	971.7	101.2
Střední Morava	CZ	43.6	4026	120.80	967.40	116.80
Střední Čechy	CZ	54.40	5947.00	178.40	979.10	174.70
Jihovýchod	CZ	54.40	7609.00	228.30	1002.30	228.80
Jihozápad	CZ	44.80	7934.00	238.00	960.90	228.70
Praha	CZ	28.70	142.00	4.30	972.80	4.20
Moravskoslezsko	CZ	40.30	2185.00	65.60	955.60	62.70
Severovýchod	CZ	47.70	5931.00	177.90	997.90	177.60
Celkem		<mark>44.2625</mark>	37247	1117.5	<mark>975.9625</mark>	1094.7

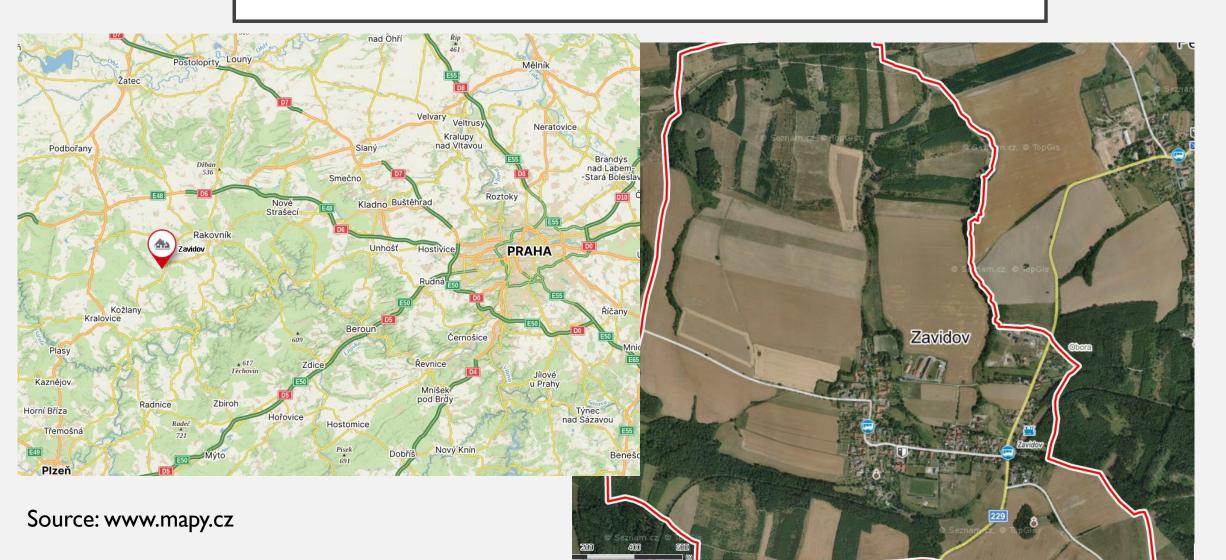
Source: Ali Khan Niazi K, Victoria M.

Comparative analysis of photovoltaic configurations for agrivoltaic systems in Europe. Prog Photovolt Res Appl. 2023; 31(11):1101-1113. doi:10.1002/pip.3727 with author export and calculation data in table.

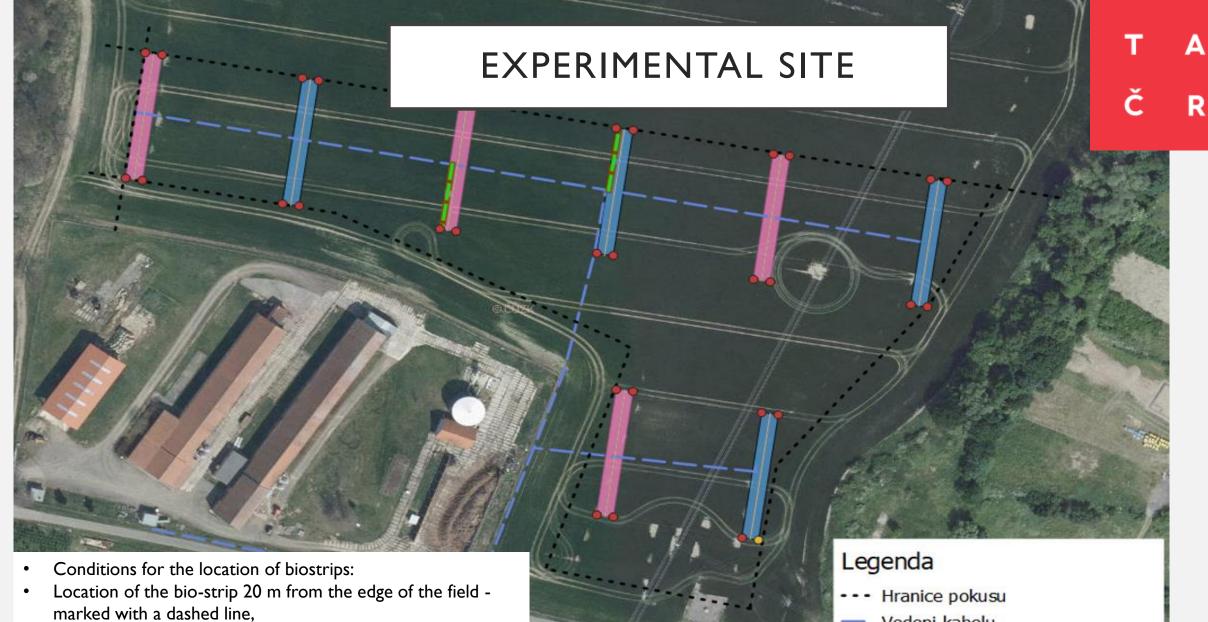
R

BASIC TYPES OF CONSTRUCTIONS AGROVOLTAICS

Photovoltaic panels are oriented to the south (mono) or east/west (bi). Fixed or tracking (single-axis or dual-axis) photovoltaic systems are also used, which follow the movement of the sun and thus maximize energy yield during the day.


DIN SPEC 91434 standard – was created in 2021 in Germany, where it specifies the definition of agrivoltaics and the basic types of construction and agricultural use.

The efficiency of an agrivoltaic system can be determined by the LER - land equivalent ratio. This value shows the efficiency of combined land use, i.e. crop and energy yield relative to individual land use.


Two types of structures - horizontal and vertical structures.

Construction of a vertical photovoltaic system 10-20 cm. 0.5 m of protective strip on each side. The distance between the individual vertical lines is usually 8 - 25 m.

EXPERIMENTAL LOCALITY CADASTRAL AREA ZAVIDOV, CENTRAL BOHEMIAN REGION

A R

- Distance between bio-strips 50 m
- Size of the experimental site 4.69 ha.
- Source QGIS with authors modification

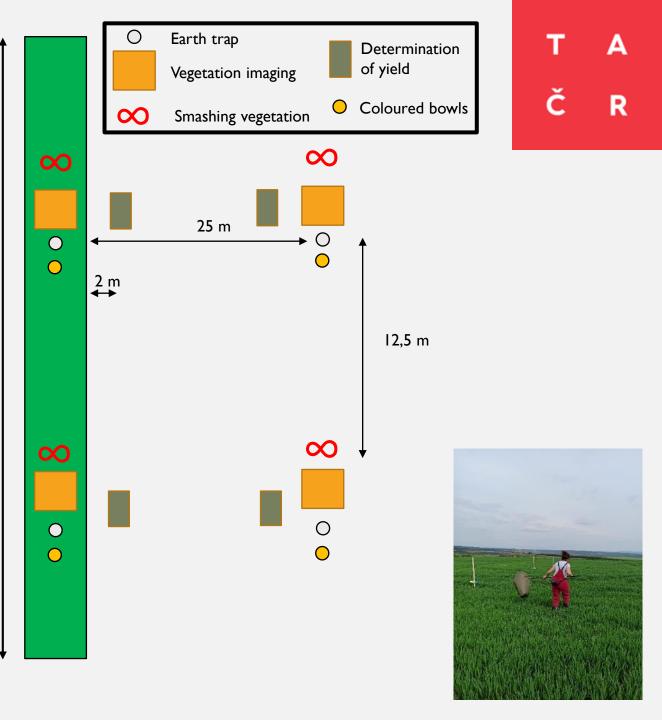
- Vedeni kabelu
- Kvetnaty biopas
- Travnaty biopas
- Vertikální linie simulující zastínění

BIOBELTS ACCORDING TO THE PRINCIPLES OF AECM (AEKO) - AGRO-ENVIRONMENTAL-CLIMATIC MEASURES

- The project includes both types of vegetative strips –
- <u>Nectar-producing bio-strips</u> conditions seed composition, age of seed mixture, seed certification, growth time, dates of establishment, mowing, maintenance, prohibition of moving equipment.
- <u>Fodder bio strips conditions seed</u>
 composition, age of seed mixture, seed
 certification, growth time, establishment dates, mowing.

Type biostrip	Species	Seeding [kg/ha]	Variety
	oves setý	65	Rertag CI
	proso seté	15	Rubikon CI
	kapusta krmná	0.8	Boma CI
	pohanka obecná	15	Kora C2
Fodder bio strips	lesklice kanárská	15	Judita CI
	svazenka vratičolistá	5	Boratus CI
	len olejný	20	Floral CI
	hrách setý pravý	30	Eso CI
	jetel luční (diploidní druhy)	15	Garant cl
	úročník bolhoj	15	Atyl
	vičenec ligrus	15	
	vikev setá	15	Nukian C2
Nectar-producing bio-strips	vojtěška	15	Giula CI
	hořčice setá	I	Andromeda CI
	pohanka obecná	5	Kora C2
	svazenka vratičolistá	I	Boratus CI
	kmín kořenný	3	Rekord CI

R


DESIGN OF BIODIVERSITY MEASUREMENT AT THE SITE- VÚRV, P.R.I.

Collection methods – ground traps, coloured bowls, skidding, vegetation imaging

25 m

PROCEDURE FOR APPROVING AN EXPERIMENTAL PVPP

Connection to the distribution network Planning permission including site plan

om ural I Of a PV plant Revision of PV plant connection to LV, no approval required,

Commissioning of the PV plant

SUMMARY

- In 2022 and 2023, simulations and measurements were installed and simulations were carried out, a substantial part of the first and second phases of the project was implemented (yield monitoring at the experimental site, implementation of biostrips, measured biodiversity of arthropods and plants after sowing biostrips, modelling and determination of PV plant output, yields and more). In 2024, we continue to work on the implementation of the experimental PV part of the project,
- Preliminary results of the PROJECT for 2023
 - I) do not confirm the statistically demonstrable a decline in grain yield and quality,
 - 2) do not confirm a statistically demonstrable increase in biodiversity (insects and plants),
 - 3) confirm the increase in the cost of agricultural work.
 - THESE ARE PRELIMINARY RESULTS THAT MUST BE VERIFIED.

CONCLUSION

- Thanks to all members of the research team and workers involved in the project.
- Questions?

Source of photos and materials – photos and materials without dedication made and is property collective of authors. It cannot be used without of agree authors.